from Wolfram MathWorld

文章正文
发布时间:2025-07-06 06:00

See alsoe Approximations, e Continued Fraction, e Digits, Carleman's Inequality, Compound Interest, de Moivre's Identity, Euler Formula, Exponential Decay, Exponential Function, Exponential Growth, Hermite-Lindemann Theorem, Natural Logarithm, Pickover's Sequence, Steiner's Problem Explore this topic in the MathWorld classroom Related Wolfram sites

Portions of this entry contributed by Jonathan Sondow (author's link)

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

ReferencesBailey, D. H. "Numerical Results on the Transcendence of Constants Involving

pi

, e, and Euler's Constant." Math. Comput. 50, 275-281, 1988.Barel, Z. "A Mnemonic for e." Math. Mag. 68, 253, 1995.Baruvelle, H. V. "The Number e: The Base of Natural Logarithms." Math. Teacher 38, 350-355, 1945.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi." Amer. Math. Monthly 96, 201-219, 1989.Brothers, H. J. "Improving the Convergence of Newton's Series Approximation for

e

." College Math. J. 35, 34-39, 2004.Brothers, H. J. and Knox, J. A. "New Closed-Form Approximations to the Logarithmic Constant e." Math. Intell. 20, 25-29, 1998.Caldwell, C. K. and Dubner, H. "Primes in Pi." J. Recr. Math. 29, 282-289, 1998.Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988.Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 201 and 250-254, 1996.Euler, L. "De fractionibus continuis dissertation." Comm. Acad. Sci. Petr. 9, 98-137, (1737) 1744. Reprinted in Leonhardi Euleri Opera Omnia, Ser. I, Vol. 14. Leipzig, Germany: Teubner, pp. 187-215, 1924.Euler, L. "An Essay on Continued Fractions." Trans. M. F. Wyman and B. F. Wyman. Math. Systems Th. 18, 295-328, 1985.Finch, S. R. "The Natural Logarithm Base." §1.3 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 12-17, 2003.Friedman, E. "Problem of the Month (August 2004)." https://erich-friedman.github.io/mathmagic/0804.html.Gardner, M. "Memorizing Numbers." Ch. 11 in The Scientific American Book of Mathematical Puzzles and Diversions. New York: Simon and Schuster, pp. 103 and 109, 1959.Gardner, M. "The Transcendental Number e." Ch. 3 in The Unexpected Hanging and Other Mathematical Diversions. Chicago, IL: Chicago University Press, pp. 34-42, 1991.Gourdon, X. and Sebah, P. "The Constant e." .Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005. .Hatzipolakis, A. P. "PiPhilology." ~bottoni/www-cilea/F90/piphil.htm.Hermite, C. "Sur la fonction exponentielle." C. R. Acad. Sci. Paris 77, 18-24, 74-79, and 226-233, 1873.Knox, J. A. and Brothers, H. J. "Novel Series-Based Approximations to e." College Math. J. 30, 209-215, 1999.Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 47, 1983.Maor, E. e: The Story of a Number. Princeton, NJ: Princeton University Press, 1994.Minkus, J. "A Continued Fraction." Problem 10327. Amer. Math. Monthly 103, 605-606, 1996.Mitchell, U. G. and Strain, M. "The Number e." Osiris 1, 476-496, 1936.Nagell, T. "Irrationality of the numbers e and

pi

." §13 in Introduction to Number Theory. New York: Wiley, pp. 38-40, 1951.Newton, I. The Mathematical Papers of Isaac Newton, Vol. 2.: 1667-1670 (Ed. D. T. Whiteside). New York: Cambridge University Press, 1968.Pippenger, N. "An Infinite Product for

e

." Amer. Math. Monthly 87, 391, 1980.Plouffe, S. "Table of Current Records for the Computation of Constants." .Rabinowitz, S. and Wagon, S. "A Spigot Algorithm for the Digits of

pi

." Amer. Math. Monthly 102, 195-203, 1995.Reid, C. In From Zero to Infinity, 4th ed. Washington, DC: Math. Assoc. Amer., 1992.Sandifer, E. "How Euler Did It: Who proved

e

is Irrational?" Feb. 2006. %20Euler%20Did%20It%2028%20e%20is%20irrational.pdf.Sloane, N. J. A. Sequences A000029/M0563, A001113/M1727, A068985, A068996, A084148, A084149, and A100074 in "The On-Line Encyclopedia of Integer Sequences."Sondow, J. "A Geometric Proof that

e

Is Irrational and a New Measure of Its Irrationality." Amer. Math. Monthly 113, 637-641, 2006.Stoneham, R. "A General Arithmetic Construction of Transcendental Non-Liouville Normal Numbers from Rational Functions." Acta Arith. 16, 239-253, 1970.Wall, H. S. Analytic Theory of Continued Fractions. New York: Chelsea, 1948.Weisstein, E. W. "Books about e." .Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, p. 46, 1986.Referenced on Wolfram|Alphae Cite this as:

Sondow, Jonathan and Weisstein, Eric W. "e." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/e.html

Subject classificationsMore...Less...

首页
评论
分享
Top